How do you integrate ln(x^2-x+2)dxln(x2x+2)dx?

1 Answer
Jul 3, 2016

=(x- 1/2) ln(x^2-x+2) - 2x + sqrt 7 arctan ( (2x-1)/sqrt 7)=(x12)ln(x2x+2)2x+7arctan(2x17)

Explanation:

int dx qquad ln(x^2-x+2)

we use IBP

int u v' = uv - int u' v

and the trick here is

u = ln(x^2-x+2), u' = (2x-1)/(x^2-x+2)
v' = 1, v = x

so we have

xln(x^2-x+2) - int dx qquad x(2x-1)/(x^2-x+2) qquad star

for int dx qquad x(2x-1)/(x^2-x+2) this becomes:

int dx qquad (2x^2-x)/(x^2-x+2)

next bit is like long division only easier

= int dx qquad (2x^2-2x + 4 + x- 4)/(x^2-x+2)

= int dx qquad 2 + (x- 4)/(x^2-x+2)

now we set it up for a log solution by setting up this pattern: (f'(x)) / f(x)

= 2x + int dx qquad (1/2(2x- 8))/(x^2-x+2)

=2x + int dx qquad (1/2(2x- 1)-7/2)/(x^2-x+2)

= 2x + int dx qquad (1/2(2x- 1))/(x^2-x+2) - 7/2 1/(x^2-x+2)

= 2x + 1/2 ln(x^2-x+2) - 7/2 int dx qquad 1/(x^2-x+2)

if we plug this all into star we have

xln(x^2-x+2) - ( 2x + 1/2 ln(x^2-x+2) - 7/2 int dx qquad 1/(x^2-x+2) )

=(x- 1/2) ln(x^2-x+2) - 2x + 7/2 int dx qquad 1/(x^2-x+2) qquad square

for int dx qquad 1/(x^2-x+2)

we complete the square, looking for a tan sub to finish it off, so

int dx qquad 1/((x-1/2)^2 - 1/4 + 2)

= int dx qquad 1/((x-1/2)^2 + 7/4)

= int dx qquad 1/(7/4 tan^2 phi + 7/4) using the sub (x-1/2)^2 = 7/4 tan^2 phi or (x-1/2) = sqrt 7/2 tan phi

so dx = sqrt 7/2 sec^2 phi \ d phi

=sqrt 7/2 int d phi qquad sec^2 phi \ 1/(7/4 sec^2 phi )

=2/ sqrt 7 int d phi qquad

=2/ sqrt 7 arctan (2 (x-1/2)/sqrt 7)

parking this back into square

=(x- 1/2) ln(x^2-x+2) - 2x + 7/2 2/ sqrt 7 arctan (2 (x-1/2)/sqrt 7)

=(x- 1/2) ln(x^2-x+2) - 2x + sqrt 7 arctan ( (2x-1)/sqrt 7)