How do you integrate (lnx)2x3dx?

1 Answer
Apr 20, 2015

let's start by u=ln(x)
du=1x

ln2(x)x3dx=1x21xln2(x)=1x2u2du

u=ln(x)
eu=x
e2u=x2
e2u=1x2

So now we have :

e2uu2du

By part :

dv=e2u
v=12e2u

w=u2
dw=2u

12[u2e2u]+ue2udu

By part again :

dv=e2u
v=12e2u
w=u
dw=1

12[u2e2u]12[e2uu]+12e2udu

12[u2e2u]12[e2uu]14[e2u]

Substitute back for u=ln(x)

12[ln2(x)1x2]12[ln(x)1x2]14[1x2]+C

14x2(2ln2(x)+2ln(x)+1)+C