How do you integrate (lnx3)3?

1 Answer
Apr 20, 2016

(lnx3)3dx=xln3x27xln2x9+2xlnx92x9+C

Explanation:

Note that (lnx3)3=ln3x27. From this, we see that

(lnx3)3dx=127ln3xdx

Using integration by parts:

udv=uvvdu

We let

u=ln3x du=3ln2xxdx

dv=(1)dx v=x

This gives us:

127ln3xdx=127xln3x1273ln2xdx

=127xln3x19ln2xdx

Integrate ln2xdx similarly (using by parts again):

u=ln2x du=2lnxxdx

dv=(1)dx v=x

Thus,

ln2x=xln2x2lnxdx

Combining this and multiplying by 19, we see that:

127ln3xdx=xln3x27xln2x9+29lnxdx

Use integration by parts one last time:

u=lnx du=1xdx

dv=(1)dx v=x

Thus,

lnxdx=xlnxdx=xlnxx

Hence,

127ln3xdx=xln3x27xln2x9+2xlnx92x9+C

Don't forget the constant of integration!