How do you integrate (lnx3)3?
1 Answer
Apr 20, 2016
Explanation:
Note that
∫(lnx3)3dx=127∫ln3xdx
Using integration by parts:
∫udv=uv−∫vdu
We let
u=ln3x ⇒ du=3ln2xxdx
dv=(1)dx ⇒ v=x
This gives us:
127∫ln3xdx=127xln3x−127∫3ln2xdx
=127xln3x−19∫ln2xdx
Integrate
u=ln2x ⇒ du=2lnxxdx
dv=(1)dx ⇒ v=x
Thus,
∫ln2x=xln2x−∫2lnxdx
Combining this and multiplying by
127∫ln3xdx=xln3x27−xln2x9+29∫lnxdx
Use integration by parts one last time:
u=lnx ⇒ du=1xdx
dv=(1)dx ⇒ v=x
Thus,
∫lnxdx=xlnx−∫dx=xlnx−x
Hence,
127∫ln3xdx=xln3x27−xln2x9+2xlnx9−2x9+C
Don't forget the constant of integration!