How do you integrate ln(x)/x^2ln(x)x2?

1 Answer
Jun 29, 2015

This can be rewritten as:

int lnx * 1/x^2dxlnx1x2dx

Using integration by parts, let:
u = lnxu=lnx
du = 1/xdxdu=1xdx
dv = 1/x^2dxdv=1x2dx
v = -1/xdxv=1xdx

With the formula
uv - intvduuvvdu

=> -lnx/x - int -1/x*1/xdxlnxx1x1xdx

= -lnx/x - int -1/x^2dx=lnxx1x2dx

= color(blue)(-lnx/x - 1/x + C)=lnxx1x+C