How do you integrate (lnx)2x3?

1 Answer
Jun 2, 2017

Begin with integration by parts:

udv=uvvdu

let u=(ln(x))2 and dv=x3dx

then du=2ln(x)xdx and v=12x2

(ln(x))2x3dx=12(ln(x)x)2(12x2)(2ln(x)x)dx

(ln(x))2x3dx=12(ln(x)x)2+ln(x)x3dx

Integrate by parts:

udv=uvvdu

let u=ln(x) and dv=x3dx

then du=1xdx and v=12x2

(ln(x))2x3dx=12(ln(x)x)2ln(x)2x2(12x2)(1x)dx

(ln(x))2x3dx=12(ln(x)x)2ln(x)2x2+121x3dx

We have already done the last integral:

(ln(x))2x3dx=12(ln(x)x)2ln(x)2x214x2+C

Simplify over a common denominator:

(ln(x))2x3dx=2(ln(x))2+2ln(x)+14x2+C