How do you integrate (sec2x) / (tan2x) dx using substitution?

1 Answer
Mar 1, 2015

Hello,

Answer. 1/4 ln |(cos(2x) + 1)/(cos(2x) - 1)| + c, where c in RR.

Explanation.

  • Because tan(2x)=sin(2x)/cos(2x) and sec(2x) = 1/cos(2x), you have to calculate int (dx)/sin(2x).

  • Take u = cos(2x). You have du = -2 sin(2x) dx, so
    int dx/sin(2x) = -1/2 int (du)/sin^2(2x) = -1/2 int (du)/(1-cos^2(2x)),
    and so :
    int dx/sin(2x) = 1/2 int (du)/(u^2-1).

  • Decompose 1/(u^2-1) = (1/2)/(u+1) - (1/2)/(u-1) and finally
    int sec(2x)/tan(2x) dx = 1/4 (ln(|u+1| - ln(|u-1|) + c
    int sec(2x)/tan(2x) dx = 1/4 ln |(u+1)/(u-1)| + c and you get the result because u=cos(2x).