How do you integrate (sec2x) / (tan2x) dx using substitution?
1 Answer
Mar 1, 2015
Hello,
Answer.
Explanation.
-
Because
tan(2x)=sin(2x)/cos(2x) andsec(2x) = 1/cos(2x) , you have to calculateint (dx)/sin(2x) . -
Take
u = cos(2x) . You havedu = -2 sin(2x) dx , so
int dx/sin(2x) = -1/2 int (du)/sin^2(2x) = -1/2 int (du)/(1-cos^2(2x)) ,
and so :
int dx/sin(2x) = 1/2 int (du)/(u^2-1) . -
Decompose
1/(u^2-1) = (1/2)/(u+1) - (1/2)/(u-1) and finally
int sec(2x)/tan(2x) dx = 1/4 (ln(|u+1| - ln(|u-1|) + c
int sec(2x)/tan(2x) dx = 1/4 ln |(u+1)/(u-1)| + c and you get the result becauseu=cos(2x) .