How do you integrate sqrt(1-x^2)?

1 Answer
Mar 29, 2018

The answer is =1/2arcsinx+1/2xsqrt(1-x^2)+C

Explanation:

Let x=sintheta, =>, dx=costhetad theta

costheta=sqrt(1-x^2)

sin2theta=2sinthetacostheta=2xsqrt(1-x^2)

Therefore, the integral is

I=intsqrt(1-x^2)dx=intcostheta*costheta d theta

=intcos^2thetad theta

cos2theta=2cos^2theta-1

cos^2theta=(1+cos2theta)/2

Therefore,

I=1/2int(1+cos2theta)d theta

=1/2(theta+1/2sin2theta)

=1/2arcsinx+1/2xsqrt(1-x^2)+C