How do you integrate sqrt(4x² + 1)?

3 Answers
Aug 14, 2018

:.I=x/2sqrt(4x^2+1)+1/4ln|2x+sqrt(4x^2+1)|+c

Explanation:

We know that,

color(red)((1)intsqrt(x^2+a^2)dx=x/2sqrt(x^2+a^2)+a^2/2ln|x+sqrt(x^2+a^2)|+c

Let.

I=intsqrt(4x^2+1)dx

Substitute 2x=u=>x=u/2=>dx=1/2du

I=intsqrt(u^2+1)*1/2du

:.I=1/2intsqrt(u^2+1^2)du

Using (1) we get

I=1/2{u/2sqrt(u^2+1^2)+1^2/2ln|u+sqrt(u^2+1^2)|}+c

Subst. back u=2x

I=1/2{(2x)/2sqrt(4x^2+1)+1/2ln|2x+sqrt(4x^2+1)|}+c

:.I=x/2sqrt(4x^2+1)+1/4ln|2x+sqrt(4x^2+1)|+c

Aug 14, 2018

I=x/2sqrt(4x^2+1)+1/4ln|2x+sqrt(4x^2+1)|+C

Explanation:

Here,

I=intsqrt(4x^2+1)dx................to(1)

I=intsqrt(4x^2+1)*1dx

Using Integration by parts:

I=sqrt(4x^2+1)int1dx-int(d/(dx)(sqrt(4x^2+1))int1dx)dx

:.I=sqrt(4x^2+1)*x-int(8x)/(2sqrt(4x^2+1)) xx xdx

:.I=xsqrt(4x^2+1)-int(4x^2)/sqrt(4x^2+1) dx

:.I=xsqrt(4x^2+1)-int(4x^2+1-1)/sqrt(4x^2+1) dx

:.I=xsqrt(4x^2+1)-intsqrt(4x^2+1) dx+int1/sqrt(4x^2+1)dx

:.I=xsqrt(4x^2+1)-I+int1/sqrt((2x)^2+1)to[because (1)]

:.I+I=xsqrt(4x^2+1)+1/2ln|2x+sqrt((2x)^2+1)|+c

:.2I=xsqrt(4x^2+1)+1/2ln|2x+sqrt(4x^2+1)|+c

:.I=x/2sqrt(4x^2+1)+1/4ln|2x+sqrt(4x^2+1)|+C

Aug 14, 2018

int \ sqrt(4x^2+1) \ dx = 1/4 sinh^(-1) x + 1/2x sqrt(4x^2+1) + C

Explanation:

One method is to use a hyperbolic substitution with x=1/2sinh u

Then:

int \ sqrt(4x^2+1) \ dx = int \ sqrt(sinh^2 u + 1) \ (dx)/(du) \ du

color(white)(int \ sqrt(4x^2+1) \ dx) = int \ sqrt(sinh^2 u + 1) 1/2 cosh u \ du

color(white)(int \ sqrt(4x^2+1) \ dx) = int \ sqrt(cosh^2 u) 1/2 cosh u \ du

color(white)(int \ sqrt(4x^2+1) \ dx) = int \ 1/2 cosh^2 u \ du

color(white)(int \ sqrt(4x^2+1) \ dx) = int \ 1/4 (1 + cosh 2 u) \ du

color(white)(int \ sqrt(4x^2+1) \ dx) = 1/4u + 1/8 sinh 2u + C

color(white)(int \ sqrt(4x^2+1) \ dx) = 1/4u + 1/4 sinh u cosh u + C

color(white)(int \ sqrt(4x^2+1) \ dx) = 1/4 sinh^(-1) x + 1/2x sqrt(4x^2+1) + C