How do you integrate t^5e^(-t)dtt5etdt?

2 Answers
Feb 15, 2015

Hello !

The standard method to integrate t\mapsto t^n e^{at}ttneat is the integration by parts :

\int_a^b u(t)v'(t)dt = [u(t)v(t)]_a^b - \int_a^b u'(t)v(t) dt

This formula is proved if you remark that (uv)' = u'v + uv' and if you integrate that on [a,b].

Here, consider I_n = \int_0^x t^{n} e^{-t}dt, u(t) = t^n and v(t) = -e^{-t}. You have u'(t) = nt^{n-1} and v'(t) = e^{-t}, therefore :

\int_0^x t^n e^{-t} dt = \int u(t)v'(t)dt = [-t^n e^{-t}]_0^x - \int_0^x nt^{n-1} (-e^{-t}) dt

or, easier, I_n = -x^n e^{-x} + nI_{n-1}.

So, you can find I_5 step by step :

I_5 = -x^5e^{-x} + 5I_4
I_4 = -x^4e^{-x} + 4I_3
I_3 = -x^3e^{-x} + 3I_2
I_2 = -x^2e^{-x} + 2I_1
I_1 = -xe^{-x} + I_0
I_0 = \int_0^x e^{-t}dt = -e^{-x} + 1

therefore,

I_1 = -x e^{-x} - e^{-x} + 1 = -(x+1)e^{-x} + 1
I_2 = -x^2 e^{-x} + 2I_1= -(x^2+2x+2)e^{-x}+2
I_3 = -x^3e^{-x} + 3I_2 = -(x^3 +3x^2+6x+6)e^{-x}+6
I_4 = -x^4e^{-x} + 4I_3 = -(x^4+4x^3+12x^2+24x+24)e^{-x} + 24

and finally,

I_5 =-(x^5+5x^4+20x^3+60x^2+120x+120)e^{-x}+120

Feb 15, 2015

The answer is:

I=-e^-t(t^5+5t^4+20t^3+60t^2+120t+120)+c

We have to use for five times (!) the integration by parts, that says:

intf(t)g'(t)dt=f(t)g(t)-intg(t)f'(t)dt

We can assume that f(t) is, step by step, the polynomial function and g'(t) is the exponential function

First step:

f(t)=t^5 and g'(t)=e^-x

so:

f'(t)=5t^4 and g'(t)=-e^-x.

I=intt^5e^-tdt=-t^5e^-t-int5t^4(-e^-t)dt=

=-t^5e^-t+5intt^4e^-tdt.

Second step:

f(t)=t^4 and g'(t)=e^-x

so:

f'(t)=4t^3 and g'(t)=-e^-x.

I=-t^5e^-t+5[-t^4e^-t-int4t^3(-e^-t)dt]=

=-t^5e^-t-5t^4e^-t+20intt^3e^-tdt.

Third step:

f(t)=t^3 and g'(t)=e^-x

so:

f'(t)=3t^2 and g'(t)=-e^-x.

I=-t^5e^-t-5t^4e^-t+20[-t^3e^-t-int3t^2(-e^-t)dt]=

=-t^5e^-t-5t^4e^-t-20t^3e^-t+60intt^2e^-tdt.

Fourth step:

f(t)=t^2 and g'(t)=e^-x

so:

f'(t)=2t and g'(t)=-e^-x.

I=-t^5e^-t-5t^4e^-t-20t^3e^-t+60[-t^2e^-t-int2t(-e^-t)dt]=

=-t^5e^-t-5t^4e^-t-20t^3e^-t-60t^2e^-t+120intte^-tdt.

Fifth step:

f(t)=t and g'(t)=e^-x

so:

f'(t)=1 and g'(t)=-e^-x.

I=-t^5e^-t-5t^4e^-t-20t^3e^-t-60t^2e^-t+120[-te^-t-int1(-e^-t)dt]=

=-t^5e^-t-5t^4e^-t-20t^3e^-t-60t^2e^-t-120te^t+120inte^-tdt=

=-t^5e^-t-5t^4e^-t-20t^3e^-t-60t^2e^-t-120te^t-120e^-t+c=

=-e^-t(t^5+5t^4+20t^3+60t^2+120t+120)+c=