The answer is:
I=-e^-t(t^5+5t^4+20t^3+60t^2+120t+120)+c
We have to use for five times (!) the integration by parts, that says:
intf(t)g'(t)dt=f(t)g(t)-intg(t)f'(t)dt
We can assume that f(t) is, step by step, the polynomial function and g'(t) is the exponential function
First step:
f(t)=t^5 and g'(t)=e^-x
so:
f'(t)=5t^4 and g'(t)=-e^-x.
I=intt^5e^-tdt=-t^5e^-t-int5t^4(-e^-t)dt=
=-t^5e^-t+5intt^4e^-tdt.
Second step:
f(t)=t^4 and g'(t)=e^-x
so:
f'(t)=4t^3 and g'(t)=-e^-x.
I=-t^5e^-t+5[-t^4e^-t-int4t^3(-e^-t)dt]=
=-t^5e^-t-5t^4e^-t+20intt^3e^-tdt.
Third step:
f(t)=t^3 and g'(t)=e^-x
so:
f'(t)=3t^2 and g'(t)=-e^-x.
I=-t^5e^-t-5t^4e^-t+20[-t^3e^-t-int3t^2(-e^-t)dt]=
=-t^5e^-t-5t^4e^-t-20t^3e^-t+60intt^2e^-tdt.
Fourth step:
f(t)=t^2 and g'(t)=e^-x
so:
f'(t)=2t and g'(t)=-e^-x.
I=-t^5e^-t-5t^4e^-t-20t^3e^-t+60[-t^2e^-t-int2t(-e^-t)dt]=
=-t^5e^-t-5t^4e^-t-20t^3e^-t-60t^2e^-t+120intte^-tdt.
Fifth step:
f(t)=t and g'(t)=e^-x
so:
f'(t)=1 and g'(t)=-e^-x.
I=-t^5e^-t-5t^4e^-t-20t^3e^-t-60t^2e^-t+120[-te^-t-int1(-e^-t)dt]=
=-t^5e^-t-5t^4e^-t-20t^3e^-t-60t^2e^-t-120te^t+120inte^-tdt=
=-t^5e^-t-5t^4e^-t-20t^3e^-t-60t^2e^-t-120te^t-120e^-t+c=
=-e^-t(t^5+5t^4+20t^3+60t^2+120t+120)+c=