How do you integrate ((x^2-1)/sqrt(2x-1) )dx?

1 Answer
May 28, 2018

I=1/60[3(sqrt(2x-1))^5+10(sqrt(2x-1))^3-45sqrt(2x-1)]+c

Explanation:

Here,

I=int((x^2-1)/sqrt(2x-1))dx

Subst, sqrt(2x-1)=u=>2x-1=u^2=>2x=u^2+1

=>x=1/2(u^2+1)=>dx=1/2(2u)du=udu

So,

I=int(1/4(u^2+1)^2-1)/uxxudu

I=int[1/4(u^4+2u^2+1)-1]du

=1/4int[u^4+2u^2+1-4]du

=1/4int[u^4+2u^2-3]du

=1/4[u^5/5+2u^3/3-3u]+c

=1/4xx1/15[3u^5+10u^3-45u]+c

=1/60[3(u)^5+10(u)^3-45u]+c

Subst, back , u=sqrt(2x-1)

I=1/60[3(sqrt(2x-1))^5+10(sqrt(2x-1))^3-45sqrt(2x-1)]+c