How do you integrate (x^2)(e^(-x))(x2)(ex)?

1 Answer
Nov 18, 2016

The answer is =e^(-x)(-x^2-2x-2) +C=ex(x22x2)+C

Explanation:

We do integration by parts
intuv'=uv-intu'v

(1)
u=x^2 => u'=2x
v'=e^(-x) => v=-e^(-x)

intx^2e^(-x)dx=-x^2e^(-x)+2intxe^(-x)dx

Then,
(2)
u=x=>u'=1
v'=e^(-x)=>v=-e^(-x)#

intxe^(-x)dx=-xe^(-x)+inte^(-xdx)

=-xe^(-x)-e^(-x)

intx^2e^(-x)dx=-x^2e^(-x)+2(-xe^(-x)-e^(-x)) +C

=e^(-x)(-x^2-2x-2) +C