How do you integrate x^2(sinx)dxx2(sinx)dx?

1 Answer
Jul 26, 2016

intx^2sin(x)dx=-x^2cos(x)+2xsin(x)+2cos(x)+Cx2sin(x)dx=x2cos(x)+2xsin(x)+2cos(x)+C

Explanation:

Use integration by parts, which takes the form:

intudv=uv-intvduudv=uvvdu

For intudv=intx^2sin(x)dxudv=x2sin(x)dx, we let:

u=x^2" "=>" "(du)/dx=2x" "=>" "du=2xdxu=x2 dudx=2x du=2xdx

dv=sin(x)dx" "=>" "intdv=intsin(x)dx" "=>" "v=-cos(x)dv=sin(x)dx dv=sin(x)dx v=cos(x)

Thus, substituting these into the integration by parts formula, we see that:

intx^2sin(x)dx=-x^2cos(x)-int(-2xcos(x))dxx2sin(x)dx=x2cos(x)(2xcos(x))dx

Simplifying the negative signs:

intx^2sin(x)dx=-x^2cos(x)+2intxcos(x)dxx2sin(x)dx=x2cos(x)+2xcos(x)dx

Now, do integration by parts once more on the remaining integral:

u=x" "=>" "(du)/dx=1" "=>" "du=dxu=x dudx=1 du=dx

dv=cos(x)dx" "=>" "intdv=intcos(x)dx" "=>" "v=sin(x)dv=cos(x)dx dv=cos(x)dx v=sin(x)

Thus:

intxcos(x)dx=xsin(x)-intsin(x)dxxcos(x)dx=xsin(x)sin(x)dx

Since intsin(x)dx=-cos(x)sin(x)dx=cos(x), this becomes:

intxcos(x)dx=xsin(x)+cos(x)xcos(x)dx=xsin(x)+cos(x)

Now, returning to before:

intx^2sin(x)dx=-x^2cos(x)+2intxcos(x)dxx2sin(x)dx=x2cos(x)+2xcos(x)dx

Substitute in intxcos(x)dx=xsin(x)+cos(x)xcos(x)dx=xsin(x)+cos(x):

intx^2sin(x)dx=-x^2cos(x)+2(xsin(x)+cos(x))x2sin(x)dx=x2cos(x)+2(xsin(x)+cos(x))

intx^2sin(x)dx=-x^2cos(x)+2xsin(x)+2cos(x)+Cx2sin(x)dx=x2cos(x)+2xsin(x)+2cos(x)+C