How do you integrate x^2cos4x^3 dxx2cos4x3dx?

1 Answer
Mar 30, 2018

1/12sin4x^3+c112sin4x3+c

Explanation:

this can be done by inspection

now if we differentiate

y=sin4x^3y=sin4x3

by teh chain rule

(dy)/(dx)=(dy)/(du)(du)/(dx)dydx=dydududx

#let

u=4x^3=>(du)/(dx)=12x^2u=4x3dudx=12x2

y=sinu=>(dy)/(dx)=cosuy=sinudydx=cosu

:. (dy)/(dx)=12x^2cosx^3

comparing this with the integral we see

intx^2cos4x^3dx

=1/12sin4x^3+c