How do you integrate x3x2+1dx?

1 Answer
Apr 25, 2018

The answer (x2+1)525(x2+1)323+c

Explanation:

Show the steps below

x3(x2+1)12dx

suppose:
u=x2+1
x=(u1)12
du=2xdx
dx=12xdu
the int become after suppose:

[u1]3u12u1du

12[u1]2udu

12(u1)udu=12uuudu=12u32u12du

12[25u5223u32]+c

u525u323+c

(x2+1)525(x2+1)323+c