How do you integrate x3(x2+5)2? Calculus Techniques of Integration Integration by Parts 1 Answer Tom Mar 26, 2015 ∫x3(x2+5)2dx We can rewrite : x3(x2+5)2=βx+γx2+5+θx+ν(x2+5)2 So : (βx+γ)(x2+5)(x2+5)(x2+5)+θx+ν(x2+5)2 Then : βx3+γx2+(5β+θ)x+ν+5γ(x2+5)2 Identification : ν+5γ=0 5β+θ=0 γ=0 β=1 So : β=1 γ=0 θ=−5 ν=0 ∫x3(x2+5)2dx=∫xx2+5dx−5∫x(x2+5)2dx 12∫2xx2+5dx−52∫2x(x2+5)2dx =(12ln(x2+5)+52x2+10)+C Answer link Related questions How do I find the integral ∫(x⋅ln(x))dx ? How do I find the integral ∫(cos(x)ex)dx ? How do I find the integral ∫(x⋅cos(5x))dx ? How do I find the integral ∫(x⋅e−x)dx ? How do I find the integral ∫(x2⋅sin(πx))dx ? How do I find the integral ∫ln(2x+1)dx ? How do I find the integral ∫sin−1(x)dx ? How do I find the integral ∫arctan(4x)dx ? How do I find the integral ∫x5⋅ln(x)dx ? How do I find the integral ∫x⋅2xdx ? See all questions in Integration by Parts Impact of this question 4959 views around the world You can reuse this answer Creative Commons License