How do you integrate x3(x2+5)2?

1 Answer
Mar 26, 2015

x3(x2+5)2dx

We can rewrite :

x3(x2+5)2=βx+γx2+5+θx+ν(x2+5)2

So : (βx+γ)(x2+5)(x2+5)(x2+5)+θx+ν(x2+5)2

Then : βx3+γx2+(5β+θ)x+ν+5γ(x2+5)2

Identification :

ν+5γ=0
5β+θ=0
γ=0
β=1

So :

β=1
γ=0
θ=5
ν=0

x3(x2+5)2dx=xx2+5dx5x(x2+5)2dx

122xx2+5dx522x(x2+5)2dx

=(12ln(x2+5)+52x2+10)+C