How do you integrate x5x3+1dx?

1 Answer
May 2, 2017

The integral is 215(x3+1)5229(x3+1)32+C

Explanation:

Let u=x3+1. Then du=3x2dxdx=du3x2. Let I be the integral.

I=x5udu3x2

I=13x3udu

I=13(u1)udu

I=13(u1)u12du

I=13u32u12du

I=13u32du13u12du

I=25(13)u5223(13)u32+C

I=215u5229u32+C

I=215(x3+1)5229(x3+1)32+C

Hopefully this helps!