How do you integrate x5⋅√x3+1dx?
1 Answer
The integral is
Explanation:
Let
I=∫x5√u⋅du3x2
I=13∫x3√udu
I=13∫(u−1)√udu
I=13∫(u−1)u12du
I=13∫u32−u12du
I=13∫u32du−13∫u12du
I=25(13)u52−23(13)u32+C
I=215u52−29u32+C
I=215(x3+1)52−29(x3+1)32+C
Hopefully this helps!