How do you integrate (x*arctan(x))/(1+x^2)^2xarctan(x)(1+x2)2?

1 Answer
Oct 2, 2016

= ( x + (x^2 -1) arctan x )/(4(x^2+1)) + C=x+(x21)arctanx4(x2+1)+C

Explanation:

int (x arctan(x))/(1+x^2)^2 dxxarctan(x)(1+x2)2dx

= int arctan(x) (x )/(1+x^2)^2 dx=arctan(x)x(1+x2)2dx

= int arctan(x) ( (- 1/2 )/(1+x^2) )^' dx

= -1/2 int arctan(x) ( (1)/(1+x^2) )^' dx

which by IBP

= -1/2 ( arctan(x) (1)/(1+x^2) - int ( arctan(x) )^' (1)/(1+x^2) dx )

= -1/2 ( arctan(x) (1)/(1+x^2) - color(blue)( int 1/(1+x^2)^2 dx) ) qquad square

for the blue bit we say that x = tan xi, dx = sec^2 xi \ d xi

So we have

int 1/(1+tan^2 xi)^2 sec^2 xi \ d xi = int cos^2 xi \ d xi

for this we use the double angle formula: cos 2 gamma = 2 cos^2 gamma - 1 giving us:

1/2 int cos 2 xi + 1 \ d xi

= 1/2 ( 1/2 sin 2 xi + xi ) + C

= 1/2 ( sin xi cos xi + xi ) + C qquad triangle

and if tan xi = x, then sin xi = x/sqrt(x^2 +1) and cos xi = 1/sqrt(x^2 +1), just draw the right-angled triangle to see.

so triangle becomes

= 1/2 ( x/(x^2 +1) + arctan x ) + C qquad triangle

So when we pop it back into square we get

= -1/2 ( arctan(x) (1)/(1+x^2) - (1/2 ( x/(x^2 +1) + arctan x ) + C )

= -1/2 arctan(x) (1)/(x^2+1) + 1/4 x/(x^2 +1) + 1/4 arctan x + C

Tidying up

=1/4 1/(x^2+1) ( -2 arctan(x) + x + (x^2 +1) arctan x ) + C

=1/4 1/(x^2+1) ( x + (x^2 -1) arctan x ) + C

= ( x + (x^2 -1) arctan x )/(4(x^2+1)) + C