How do you integrate xcos2(x)?

1 Answer
Nov 7, 2016

x24+(x4)sin2x+cos(2x)8+c.where c is integration constant .

Explanation:

(xcos2x)dx
=(12)(x2cos2x)dx
now (x2cos2x)dx
={x(1+cos2x)}dx
=xdx+(xcos2x)dx
[integration by parts]
=x22+x((cos2x)dx)[(dxdx)(cos2x)dx]dx
=x22+xsin(2x)2(sin2x2)dx
=x22+xsin(2x)2+cos2x4+c
hence the value of the integral :x24+xsin(2x)4+cos(2x)8+c,where c is constant of integration.