How do you integrate x ln (x + 1) dxxln(x+1)dx?

1 Answer
Jul 12, 2016

= (x^2 -1) /2 ln(x+1) - 1/4 x(x - 2) + C=x212ln(x+1)14x(x2)+C

Explanation:

int \ x ln (x + 1) \ dx

= int \ d/dx (x^2/2) ln (x + 1) \ dx

and by IBP : int u v' = uv - int u'v

= x^2 /2 ln(x+1) - int \ x^2/2 d/dx ( ln (x + 1) )\ dx

= x^2 /2 ln(x+1) - 1/2 color{blue}{ int \ (x^2)/(x + 1) }\ dx qquad triangle

for the integration in blue, we use a simple sub

u = x+1, du = dx

int \ ((u-1)^2)/(u) \ du

int \ u - 2 + 1/u \ du

= u^2/2 - 2 u + ln u

= (x+1)^2/2 - 2(x+1) + ln (x+1)

so triangle becomes

= x^2 /2 ln(x+1) - 1/2 ((x+1)^2/2 - 2(x+1) + ln (x+1)) + C

= x^2 /2 ln(x+1) - 1/4 (x+1)^2 + (x+1) - 1/2ln (x+1) + C

= (x^2 -1) /2 ln(x+1) - 1/4 (x^2 + 2x +1 - 4x-4) + C

= (x^2 -1) /2 ln(x+1) - 1/4 (x^2 - 2x - 3) + C

= (x^2 -1) /2 ln(x+1) - 1/4 (x^2 - 2x) + C

= (x^2 -1) /2 ln(x+1) - 1/4 x(x - 2) + C