int \ x ln (x + 1) \ dx
= int \ d/dx (x^2/2) ln (x + 1) \ dx
and by IBP : int u v' = uv - int u'v
= x^2 /2 ln(x+1) - int \ x^2/2 d/dx ( ln (x + 1) )\ dx
= x^2 /2 ln(x+1) - 1/2 color{blue}{ int \ (x^2)/(x + 1) }\ dx qquad triangle
for the integration in blue, we use a simple sub
u = x+1, du = dx
int \ ((u-1)^2)/(u) \ du
int \ u - 2 + 1/u \ du
= u^2/2 - 2 u + ln u
= (x+1)^2/2 - 2(x+1) + ln (x+1)
so triangle becomes
= x^2 /2 ln(x+1) - 1/2 ((x+1)^2/2 - 2(x+1) + ln (x+1)) + C
= x^2 /2 ln(x+1) - 1/4 (x+1)^2 + (x+1) - 1/2ln (x+1) + C
= (x^2 -1) /2 ln(x+1) - 1/4 (x^2 + 2x +1 - 4x-4) + C
= (x^2 -1) /2 ln(x+1) - 1/4 (x^2 - 2x - 3) + C
= (x^2 -1) /2 ln(x+1) - 1/4 (x^2 - 2x) + C
= (x^2 -1) /2 ln(x+1) - 1/4 x(x - 2) + C