How do you integrate xe^xxex from -oo to 0?

1 Answer
Jul 1, 2016

= - 1 =1

Explanation:

int _(-oo)^0 dx qquad x e^x

using IBP ie int u v' = uv - int u' v where, here:

u = x, u' = 1
v' = e^x, v = e^x

So we have

[x e^x]_(-oo)^0 - int dx qquad e^x

= [ e^x (x - 1)]_(-oo)^0

= [ e^0 (0 - 1)] - [ \color{blue}{e^(-oo) (-oo) } - 1)]

= - 1

NB for the bit in blue, lim_{x to - oo} x e^x = lim_{x to - oo} x/e^(-x) which is indeterminate oo/ooso we use L'Hopital

= lim_{x to - oo} 1/(-e^(-x))

=- lim_{x to - oo} e^(x)

=- exp( lim_{x to - oo} x)

= -e^(- oo) = 0