How do you integrate xe^xxex from -oo−∞ to 0? Calculus Techniques of Integration Integration by Parts 1 Answer Eddie Jul 1, 2016 = - 1 =−1 Explanation: int _(-oo)^0 dx qquad x e^x using IBP ie int u v' = uv - int u' v where, here: u = x, u' = 1 v' = e^x, v = e^x So we have [x e^x]_(-oo)^0 - int dx qquad e^x = [ e^x (x - 1)]_(-oo)^0 = [ e^0 (0 - 1)] - [ \color{blue}{e^(-oo) (-oo) } - 1)] = - 1 NB for the bit in blue, lim_{x to - oo} x e^x = lim_{x to - oo} x/e^(-x) which is indeterminate oo/ooso we use L'Hopital = lim_{x to - oo} 1/(-e^(-x)) =- lim_{x to - oo} e^(x) =- exp( lim_{x to - oo} x) = -e^(- oo) = 0 Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 2709 views around the world You can reuse this answer Creative Commons License