How do you integrate #xe^x# from #-oo# to 0? Calculus Techniques of Integration Integration by Parts 1 Answer Eddie Jul 1, 2016 #= - 1 # Explanation: #int _(-oo)^0 dx qquad x e^x# using IBP ie #int u v' = uv - int u' v# where, here: #u = x, u' = 1# #v' = e^x, v = e^x# So we have #[x e^x]_(-oo)^0 - int dx qquad e^x# #= [ e^x (x - 1)]_(-oo)^0# #= [ e^0 (0 - 1)] - [ \color{blue}{e^(-oo) (-oo) } - 1)] # #= - 1 # NB for the bit in blue, #lim_{x to - oo} x e^x = lim_{x to - oo} x/e^(-x) # which is indeterminate #oo/oo#so we use L'Hopital #= lim_{x to - oo} 1/(-e^(-x)) # #=- lim_{x to - oo} e^(x)# #=- exp( lim_{x to - oo} x)# #= -e^(- oo) = 0# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 2501 views around the world You can reuse this answer Creative Commons License