How do you integrate xln(1+x)dx?

1 Answer
Jul 16, 2015

The solution is shown here (sometimes Wolfram Alpha has trouble computing integrals with lnx properly, so I gave the backwards check).

I would start with a u-substitution and separate the integral.

Let:
u=x+1
du=dx
x=u1

(u1)lnudu

=ulnudulnudu

With these two integrals in mind, we can do Integration by Parts (assuming you already know the integral of lnx). Ignoring the lnu, let:

s=lnu
ds=1udu
dt=udu
t=u22

Thus:

sttds

=[u2lnu2u221udu]lnudu

=u2lnu212udulnudu

=u2lnu2u24(ulnuu)

=u2lnu2u24ulnu+u

=u2lnu2ulnuu24+u

=(x+1)2ln(x+1)2(x+1)ln(x+1)(x+1)24+x+1+C

And 1 gets embedded into C:

=(x+1)2ln(x+1)2(x+1)ln(x+1)(x+1)24+x+C