How do you know if the series #(1+n+n^2)/(sqrt(1+(n^2)+n^6))# converges or diverges for (n=1 , ∞) ?
1 Answer
Nov 29, 2015
#=1/n^2*(n^2+2n^3+3n^4+2n^5+n^6)/(1+n^2+n^6)#
#=1/n^2*((1+n^2+n^6)+(2n^3+3n^4+2n^5-1))/(1+n^2+n^6)#
#=1/n^2*(1+(2n^3+3n^4+2n^5-1)/(1+n^2+n^6))#
#>1/n^2# for all#n >= 1#
So
And