How do you know if the series (1+n+n^2)/(sqrt(1+(n^2)+n^6)) converges or diverges for (n=1 , ∞) ?

1 Answer
Nov 29, 2015

((1+n+n^2)/sqrt(1+n^2+n^6))^2 = (1+2n+3n^2+2n^3+n^4)/(1+n^2+n^6)

=1/n^2*(n^2+2n^3+3n^4+2n^5+n^6)/(1+n^2+n^6)

=1/n^2*((1+n^2+n^6)+(2n^3+3n^4+2n^5-1))/(1+n^2+n^6)

=1/n^2*(1+(2n^3+3n^4+2n^5-1)/(1+n^2+n^6))

>1/n^2 for all n >= 1

So (1+n+n^2)/sqrt(1+n^2+n^6) > 1/n

And sum_(n=1)^oo (1+n+n^2)/sqrt(1+n^2+n^6) > sum_(n=1)^oo 1/n diverges.