How do you know if the series (1+n+n^2)/(sqrt(1+(n^2)+n^6)) converges or diverges for (n=1 , ∞) ?
1 Answer
Nov 29, 2015
=1/n^2*(n^2+2n^3+3n^4+2n^5+n^6)/(1+n^2+n^6)
=1/n^2*((1+n^2+n^6)+(2n^3+3n^4+2n^5-1))/(1+n^2+n^6)
=1/n^2*(1+(2n^3+3n^4+2n^5-1)/(1+n^2+n^6))
>1/n^2 for alln >= 1
So
And