How do you list all possible roots and find all factors of #3x^2+2x+2#?
1 Answer
This quadratic has zeros:
#3x^2+2x+2#
#= 3(x+1/3-sqrt(5)/3i)(x+1/3+sqrt(5)/3i)#
#= 1/3(3x+1-sqrt(5)i)(3x+1+sqrt(5)i)#
Explanation:
Given:
#3x^2+2x+2#
Note that this is in standard quadratic form
This has discriminant
#Delta = b^2-4ac = 2^2-(4*3*2) = 4-24 = -20 = -2^2*5#
Since
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#=(-b+-sqrt(Delta))/(2a)#
#=(-2+-sqrt(-20))/6#
#=(-2+-2sqrt(5)i)/6#
#=1/3(-1+-sqrt(5)i)#
That is:
#x_1 = 1/3(-1+sqrt(5)i)#
#x_2 = 1/3(-1-sqrt(5)i)#
Both
#3(x-x_1) = (3x+1-sqrt(5)i)#
#3(x-x_2) = (3x+1+sqrt(5)i)#
If we multiply these together we will get a leading term
#3x^2+2x+2 = 1/3(3x+1-sqrt(5)i)(3x+1+sqrt(5)i)#
Alternatively, if we prefer monic factors, we can write:
#3x^2+2x+2 = 3(x+1/3-sqrt(5)/3i)(x+1/3+sqrt(5)/3i)#