How do you list all possible roots and find all factors of #6x^3+7x^2-3x-1#?
1 Answer
The "possible" rational zeros are:
#+-1/6, +-1/3, +-1/2, +-1#
The factorisation is:
#6x^3+7x^2-3x-1#
#= 3(2x-1)(x+5/6-sqrt(13)/6)(x+5/6+sqrt(13)/6)#
Explanation:
Given:
#f(x) = 6x^3+7x^2-3x-1#
By the rational roots theorem, any rational zeros of
That means that the only possible rational zeros are:
#+-1/6, +-1/3, +-1/2, +-1#
We find:
#f(1/2) = 6(1/8)+7(1/4)-3(1/2)-1 = (3+7-6-4)/4 = 0#
So
#6x^3+7x^2-3x-1 = (2x-1)(3x^2+5x+1)#
We can factor the remaining quadratic by completing the square.
To reduce the need to do arithmetic with fractions, I will premultiply by
#12(3x^2+5x+1) = 36x^2+60x+12#
#color(white)(12(3x^2+5x+1)) = (6x)^2+2(6x)(5)+25-13#
#color(white)(12(3x^2+5x+1)) = (6x+5)^2-(sqrt(13))^2#
#color(white)(12(3x^2+5x+1)) = ((6x+5)-sqrt(13))((6x+5)+sqrt(13))#
#color(white)(12(3x^2+5x+1)) = (6x+5-sqrt(13))(6x+5+sqrt(13))#
#color(white)(12(3x^2+5x+1)) = 12*3(x+5/6-sqrt(13)/6)(x+5/6+sqrt(13)/6)#
So:
#3x^2+60x+12 = 3(x+5/6-sqrt(13)/6)(x+5/6+sqrt(13)/6)#
Putting it all together:
#6x^3+7x^2-3x-1#
#= 3(2x-1)(x+5/6-sqrt(13)/6)(x+5/6+sqrt(13)/6)#