How do you long divide #2n^3 - 14n + 12 div n + 3#?

2 Answers
Apr 3, 2018

Quotient is #2n^2-6n+4# and remainder is #0#

Explanation:

#2n^3-14n+12#

=#2n^3+6n^2-6n^2-18n+4n+12#

=#2n^2*(n+3)-6n*(n+3)+4*(n+3)#

=#(2n^2-6n+4)*(n+3)#

Hence quotient is #2n^2-6n+4# and remainder is #0#.

Apr 4, 2018

#color(green)("Quotient " 2*(n^2 - 3n + 2), color(indigo)(" Remainder " 0#

Explanation:

#color(white)(aaa aaa aaa aaa aa) 2n^2 color(white)(aa)- 6n color(white)(aaa) + 4#
#color(white)(aaa aaa aaa ) | - - - - - - - - - - - #
#color(white)(aaa) n + 3 " "color(aaa)| color(white)(aaa)2n^3 color(white)(aaa aa) 0 color(white)(aa)-14n color(white)(aa) + 12 #
#color(white)(aaa aaa aaa ) | color(white)(aaa a)2n^3 color(white)(a)+ 6n^2#
#color(white)(aaa aaa aaa) | - - - - - - - - - #
#color(white)(aaa aaa aaa) | color(white)(aaa aaa) 0 color(white)(a)-6n^2 color(white)(a)-14n#
#color(white)(aaa aaa aaa) | color(white)(aaa aa a aa)-6n^2 color(white)(a) - 18n#
#color(white)(aaa aaa aaa) | color(white)(aaa aa) - - - - - - - - -#
#color(white)(aaa aaa aaa) | color(white)(aaa aaa aaa aaa) 0 color(white)(aa) + 4n color(white)(aaa) + 12#
#color(white)(aaa aaa aaa) | color(white)(aaa aaa aaa aaa aaa) +4n color(white)(aaa) + 12 #
#color(white)(aaa aaa aaa) | color(white)(aaa aaa aaa a) - - - - - - -#
#color(white)(aaa aaa aaa) | color(white)(aaa aaa aaa aaa aaa aaa ) 0 color(white)(aaa aaa a) 0#

#color(green)("Quotient " 2n^2 - 6n + 4), color(indigo)(" Remainder " 0#