How do you long divide #(2x^4+x^3-5x^2+13x-6)/(x^2+3x-2)#?

2 Answers
Jun 25, 2017

#color(blue)(2x^2-5x+14 #and remainder # color(blue)(-39x+22#

Explanation:

#(2x^4+x^3-5x^2+13x-6) / (x^2+3x-2) = 2x^2-5x+14# and remainder of
#-39x+22#

#color(white)(..........)color(white)(............)2x^2-5x+14#
#x^2+3x-2|overline(2 x^4+x^3-3x^2+13x-6)#
#color(white)(....................)ul(2x^4+6x^3-4x^2)#
#color(white)(..........................)-5x^3-x^2+13x#
#color(white)(............................)ul(-5x^3-15x^2+10x)#
#color(white)(..................................)14x^2+3x-6#
#color(white)(..................................)ul(14x^2+12x-28)#
#color(white)(..........................................)-39x+22#

#color(blue)((2x^4+x^3-5x^2+13x-6) / (x^2+3x-2) = 2x^2-5x+4# and remainder #color(blue)(-39x+22#

Jun 25, 2017

#2x^2-5x+14 -(39x-22)/(x^2+3x-2) #

Explanation:

This is a format that I decided upon specifically for Socratic

#" "2x^4+color(white)(6)x^3-5x^2+13x-6#
#color(magenta)(+2x^2)(x^2+3x-2)-> ul(2x^4+6x^3-4x^2 larr" Subtract"#
#" "0-5x^3-color(white)(15)x^2+13x-6#
#color(magenta)(-5x)(x^2+3x-2)-> " "ul(-5x^3-15x^2+10x larr" Subtract"#
#" "0+14x^2+color(white)(.)3x-6#
#color(magenta)(+14)(x^2+3x-2)->" "ul(14x^2+42x-28larr" Sub."#
#" "0" "color(magenta)(-39x+22)#

Where #-39x+22# is the remainder

#color(magenta)( 2x^2-5x+14+ (-39x+22)/(x^2+3x-2) )#

note that #+(-39x+22)/(x^2+3x-2) # is the same as #-(39x-22)/(x^2+3x-2)# giving:

#2x^2-5x+14 -(39x-22)/(x^2+3x-2) #