How do you long divide #(4x^3-6x^2+5)div(x^2-4)#?

1 Answer
Apr 9, 2017

#4x-6# with remainder: #(16x-19)#

Explanation:

Assuming you are familiar with the process for "normal" long division:

#color(white)("XXXX")ul(color(white)("xx")4xcolor(white)("x")-6color(white)("xxxxxxxxxxxx")#
#x^2-4)color(white)("x")4x^3color(white)("x")-6xcolor(white)("x")color(grey)(+0x)color(white)("x")+5#
#color(white)("XXXXX")ul(4x^3color(white)("xxxxx")-16xcolor(white)("xxxx"))#
#color(white)("XXXXXXXX")-6x+16xcolor(white)("x")+5#
#color(white)("XXXXXXXX")ul(-6xcolor(white)("xxxxxx")+24#
#color(white)("XXXXXXXXXXXXX")16x-19#