How do you long divide #(6x^2+7x+5) / (2x+5)#?

1 Answer
May 30, 2016

#" "3x-4 +25/(2x+5)#

Supporting Brian's answer but with a small amount of further explanantion.

Explanation:

#" "3x-4#
#" "2x+5color(white)(.)bar(| color(white)(.)6x^2+7x+5)#
#" "underline(6x^2+15x )" " larr" Subtract "3x(2x+5)#
#" "0x^2-8x+5" " larr" Bring down the +5"#
#" "underline(-8x-20)" " larr" Subtract "-4(2x+5)#
#" "0x+25#

Remainder #-> +25" giving " +25/(2x+5)#

So the final answer is:

#" "3x-4 +25/(2x+5)#