How do you long divide # (a^3 - 2a^2 + a) div (a - 1)#?

1 Answer
Apr 8, 2016

(see below for steps of long division)
#(a^3-2a^2+a)div(a-1)=color(green)(a^2-a#

Explanation:

Here it is; one step at a time:

Write in long division form:
#color(white)("XXXX")#
#a-1 )bar(a^3-2a^2+a)#

Leading term of divisor into leading term of dividend
#color(white)("XXXX")color(red)(a^2)#
#color(red)(a)-1 )bar(color(red)(a^3)-2a^2+a)#

Leading term of quotient times complete divisor
#color(white)("XXXX")color(red)(a^2)#
#color(red)(a-1) )bar(a^3-2a^2+a)#
#color(white)("XXXX")underline(color(red)(a^3-a^2)#

Subtract to get progressive dividend/remainder
#color(white)("XXXX")a^2#
#a-1) bar(a^3-2a^2+a)#
#color(white)("XXXX")underline(a^3-a^2)#
#color(white)("XXXXXX")color(red)(-a^2+a)#

Leading term of divisor into leading term of progressive dividend/remainder
#color(white)("XXXX")a^2color(red)(-a)#
#color(red)(a)-1) bar(a^3-2a^2+a)#
#color(white)("XXXX")underline(a^3-a^2)#
#color(white)("XXXXXX")color(red)(-a^2)+a#

Next term of quotient times complete divisor
#color(white)("XXXX")a^2color(red)(-a)#
#color(red)(a-1)) bar(a^3-2a^2+a)#
#color(white)("XXXX")underline(a^3-a^2)#
#color(white)("XXXXXX")-a^2+a#
#color(white)("XXXXXX")underline(color(red)(-a^2+a))#

Subtract to get final remainder
#color(white)("XXXX")a^2-a#
#a-1) bar(a^3-2a^2+a)#
#color(white)("XXXX")underline(a^3-a^2)#
#color(white)("XXXXXX")-a^2+a#
#color(white)("XXXXXX")underline(-a^2+a)#
#color(white)("XXXXXXXXXX")color(red)(0)#