How do you long divide #(x^3+3x^2+x)div (x+2)#?

1 Answer
Dec 8, 2016

The quotient is #=x^2+x-1# and the remainder is #=2#

Explanation:

You can either do a long division or use the remainder theorem

Let's do the long division

#color(white)(aaaa)##x^3+3x^2+x##color(white)(aaaa)##∣##x+2#

#color(white)(aaaa)##x^3+2x^2##color(white)(aaaaaaaa)##∣##x^2+x-1#

#color(white)(aaaaaa)##0+x^2+x#

#color(white)(aaaaaaaa)##+x^2+2x#

#color(white)(aaaaaaaaa)##+0-x#

#color(white)(aaaaaaaaaaaaa)##-x#

#color(white)(aaaaaaaaaaaaa)##-x-2#

#color(white)(aaaaaaaaaaaaaaa)##0+2#

So

#(x^3+3x^2+x)/(x+2)=x^2+x-1+2/(x+2)#

Let's try the remainder theorem

Let #f(x)=x^3+3x^2+x#

Then. #f(-2)=(-2)^3+3*(-2)^2-2#

#=-8+12-2=2#

The remainder is #=2#