How do you long divide #(x^[4] - 16)/( x + 2)#? Precalculus Real Zeros of Polynomials Long Division of Polynomials 1 Answer MeneerNask Jun 6, 2015 You may first want to factorise #x^4-16# tomake the long division less tedious: #x^4-16=(x^2+4)(x^2-4)=# now further factorise #x^2-4# #(x^2+4)(x+2)(x-2)# Dividing this by #x+2# and cancelling leaves: #(x^2+4)(x-2)# Answer link Related questions What is long division of polynomials? How do I find a quotient using long division of polynomials? What are some examples of long division with polynomials? How do I divide polynomials by using long division? How do I use long division to simplify #(2x^3+4x^2-5)/(x+3)#? How do I use long division to simplify #(x^3-4x^2+2x+5)/(x-2)#? How do I use long division to simplify #(2x^3-4x+7x^2+7)/(x^2+2x-1)#? How do I use long division to simplify #(4x^3-2x^2-3)/(2x^2-1)#? How do I use long division to simplify #(3x^3+4x+11)/(x^2-3x+2)#? How do I use long division to simplify #(12x^3-11x^2+9x+18)/(4x+3)#? See all questions in Long Division of Polynomials Impact of this question 3011 views around the world You can reuse this answer Creative Commons License