How do you multiply #(4u+7v)^2#? Algebra Polynomials and Factoring Multiplication of Polynomials by Binomials 1 Answer Shwetank Mauria Aug 19, 2016 #(4u+7v)^2=16u^2+56uv+49v^2# Explanation: #(4u+7v)^2# = #(4u+7v)(4u+7v)# = #4u(4u+7v)+7v(4u+7v)# = #4u×4u+4u×7v+7v×4u+7v×7v# = #16u^2+28uv+28uv+49v^2# = #16u^2+56uv+49v^2# Answer link Related questions What is FOIL? How do you use the distributive property when you multiply polynomials? How do you multiply #(x-2)(x+3)#? How do you simplify #(-4xy)(2x^4 yz^3 -y^4 z^9)#? How do you multiply #(3m+1)(m-4)(m+5)#? How do you find the volume of a prism if the width is x, height is #2x-1# and the length if #3x+4#? How do you multiply #(a^2+2)(3a^2-4)#? How do you simplify #(x – 8)(x + 5)#? How do you simplify #(p-1)^2#? How do you simplify #(3x+2y)^2#? See all questions in Multiplication of Polynomials by Binomials Impact of this question 1902 views around the world You can reuse this answer Creative Commons License