How do you multiply #(w-3)(w-5)#? Algebra Polynomials and Factoring Multiplication of Polynomials by Binomials 1 Answer ali ergin Apr 17, 2017 #(w-3)(w-5)=w^2-8w+15# Explanation: #(w-3)(w-5)# #(w-3)(w-5)=w*w-5*w-3*w-3*(-5)# #(w-3)(w-5)=w^2-5w-3w+15# #(w-3)(w-5)=w^2-8w+15# Answer link Related questions What is FOIL? How do you use the distributive property when you multiply polynomials? How do you multiply #(x-2)(x+3)#? How do you simplify #(-4xy)(2x^4 yz^3 -y^4 z^9)#? How do you multiply #(3m+1)(m-4)(m+5)#? How do you find the volume of a prism if the width is x, height is #2x-1# and the length if #3x+4#? How do you multiply #(a^2+2)(3a^2-4)#? How do you simplify #(x – 8)(x + 5)#? How do you simplify #(p-1)^2#? How do you simplify #(3x+2y)^2#? See all questions in Multiplication of Polynomials by Binomials Impact of this question 2298 views around the world You can reuse this answer Creative Commons License