How do you multiply #(x^2+3x-5) (x^3+4x^2-3x+2) #? Algebra Polynomials and Factoring Multiplication of Polynomials by Binomials 1 Answer Don't Memorise Aug 23, 2015 #=color(blue)(x^5+7x^4+4x^3-27x^2+21x-10# Explanation: #color(blue)((x^2+3x−5))(x^3+4x^2−3x+2)# #=color(blue)((x^2))(x^3+4x^2−3x+2) +color(blue)((3x))(x^3+4x^2−3x+2) + color(blue)((-5))(x^3+4x^2−3x+2)# #=x^5+4x^4-3x^3+2x^2+color(blue)(3x^4+12x^3-9x^2+6x) -5x^3-20x^2+15x-10# Adding like terms #=color(blue)(x^5+7x^4+4x^3-27x^2+21x-10# Answer link Related questions What is FOIL? How do you use the distributive property when you multiply polynomials? How do you multiply #(x-2)(x+3)#? How do you simplify #(-4xy)(2x^4 yz^3 -y^4 z^9)#? How do you multiply #(3m+1)(m-4)(m+5)#? How do you find the volume of a prism if the width is x, height is #2x-1# and the length if #3x+4#? How do you multiply #(a^2+2)(3a^2-4)#? How do you simplify #(x – 8)(x + 5)#? How do you simplify #(p-1)^2#? How do you simplify #(3x+2y)^2#? See all questions in Multiplication of Polynomials by Binomials Impact of this question 1789 views around the world You can reuse this answer Creative Commons License