How do you multiply #(x^3+1 )/(x^3-x^2+x)*(11x)/(-132x - 132)#? Algebra Rational Equations and Functions Multiplication of Rational Expressions 1 Answer Barney V. Apr 1, 2018 #-1/12# Explanation: #(x^3+1)/(x^3-x^2+x)*(11x)/(-13x-132)# #:.=((cancel(x+1))cancel((x^2-x+1)))/(cancelx(cancel(x^2-x+1)))*(11cancelx)/(-132(cancel(x+1)))# #:.=cancel11^1/cancel(-132)^-12# #:.=-1/12# Answer link Related questions What is Multiplication of Rational Expressions? How do you multiplying rational expressions? Is multiplication of rational expressions commutative? How do you multiply #\frac{12x^2-x-6}{x^2-1} \cdot \frac{x^2+7x+6}{4x^2-27x+18}#? How do you multiply and simplify to the lowest terms #\frac{x^3}{2y^3} \cdot \frac{2y^2}{x}#? How do you multiply #\frac{5x^2+16x+3}{36x^2-25} \cdot (6x^2+5x)#? How do you multiply and simplify the expression #2xy \cdot \frac{2y^2}{x^3}#? How do you multiply #(a^2-a-12)/(a^2-5a+4)*(a^2+2a-3)/(a^2+a-6)#? How do you multiply #(4(x+2))/(5x)*(6x^2)/(2x)#? How do you multiply #(30a^2)/(18b)*(6b)/(5a)#? See all questions in Multiplication of Rational Expressions Impact of this question 1683 views around the world You can reuse this answer Creative Commons License