How do you normalize # (-2i + -1j + 2k)#?

1 Answer
Jun 18, 2018

The answer is #=<-2/3,-1/3,2/3>#

Explanation:

To normalize a vector #vecu#, divide the vector by the modulus of the vector

#hatu=vecu/||vecu||#

Here,

#vecu= <-2,-1,2>#

The modulus is

#||vecu|| = ||<-2,-1,2>|| = sqrt((-2)^2+(-1)^2+(2)^2)#

#=sqrt(4+1+4)#

#=sqrt9#

#=3#

Therefore,

#hatu=1/3*<-2,-1,2> = <-2/3,-1/3,2/3>#