How do you prove 1+sec[θ]tan[θ]+sin[θ]=csc[θ]? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub May 3, 2016 see below Explanation: Left Side:=1+secθtanθ+sinθ =1+1cosθsinθcosθ+sinθ =cosθ+1cosθsinθ+sinθcosθcosθ =cosθ+1cosθ×cosθsinθ+sinθcosθ =cosθ+1sinθ+sinθcosθ =cosθ+1sinθ(1+cosθ) =cosθ+1sinθ(cosθ+1) =1sinθ =cscθ =Right Side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove cscθ×tanθ=secθ? How do you prove (1−cos2x)(1+cot2x)=1? How do you show that 2sinxcosx=sin2x? is true for 5π6? How do you prove that secxcotx=cscx? How do you prove that cos2x(1+tan2x)=1? How do you prove that 2sinxsecx(cos4x−sin4x)=tan2x? How do you verify the identity: −cotx=sin3x+sinxcos3x−cosx? How do you prove that tanx+cosx1+sinx=secx? How do you prove the identity sinx−cosxsinx+cosx=2sin2x−11+2sinxcosx? See all questions in Proving Identities Impact of this question 7326 views around the world You can reuse this answer Creative Commons License