How do you prove #(1 + sin 2A) / (cos 2A) = (cos A + sin A) / (cos A - sin A)#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Alan P. Apr 23, 2015 #(1+sin(2A))/(cos(2A))# #= (1+2sin(A)cos(A))/(cos^2(A)-sin^2(A))# #= (cos^2(A)+sin^2(A) +2sin(A)cos(A))/((cos(A)-sin(A)) * (cos(A)+sin(A)))# #= (cos(A)+sin(A))^2/((cos(A)-sin(A)) * (cos(A)+sin(A)))# #= (cos(A)+sin(A))/(cos(A)-sin(A))# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 4840 views around the world You can reuse this answer Creative Commons License