How do you prove [(2tanx)/(1-tan^2x)]+[(1)/(2cos^2x-1)]= (cosx+sinx)/(cosx-sinx)[2tanx1tan2x]+[12cos2x1]=cosx+sinxcosxsinx?

1 Answer
Mar 26, 2018

Please see below.

Explanation:

We know that,

color(red)((1)tan2x=(2tanx)/(1-tan^2x)(1)tan2x=2tanx1tan2x

color(red)((2)cos2x=2cos^2x-1=cos^2x-sin^2x(2)cos2x=2cos2x1=cos2xsin2x

color(red)((3)sin2x=2sinxcosx,and cos^2x+sin^2x=1(3)sin2x=2sinxcosx,andcos2x+sin2x=1

We have,

(2tanx)/(1-tan^2x)+1/(2cos^2x-1)=(cosx+sinx)/(cosx-sinx)2tanx1tan2x+12cos2x1=cosx+sinxcosxsinx

Now,

LHS=(2tanx)/(1-tan^2x)+1/(2cos^2x-1LHS=2tanx1tan2x+12cos2x1

=tan2x+1/(cos2x).......toUsing (1) and (2)

=(sin2x)/(cos2x)+1/(cos2x)

=(1+sin2x)/(cos2x)

=(sin^2x+cos^2x+2sinxcosx)/(cos^2x-sin^2x).....toUsing (2) and (3)

=(cosx+sinx)^cancel(2)/(cancel((cosx+sinx))(cosx-sinx))

=(cosx+sinx)/(cosx-sinx)

=RHS