We know that,
color(red)((1)tan2x=(2tanx)/(1-tan^2x)(1)tan2x=2tanx1−tan2x
color(red)((2)cos2x=2cos^2x-1=cos^2x-sin^2x(2)cos2x=2cos2x−1=cos2x−sin2x
color(red)((3)sin2x=2sinxcosx,and cos^2x+sin^2x=1(3)sin2x=2sinxcosx,andcos2x+sin2x=1
We have,
(2tanx)/(1-tan^2x)+1/(2cos^2x-1)=(cosx+sinx)/(cosx-sinx)2tanx1−tan2x+12cos2x−1=cosx+sinxcosx−sinx
Now,
LHS=(2tanx)/(1-tan^2x)+1/(2cos^2x-1LHS=2tanx1−tan2x+12cos2x−1
=tan2x+1/(cos2x).......toUsing (1) and (2)
=(sin2x)/(cos2x)+1/(cos2x)
=(1+sin2x)/(cos2x)
=(sin^2x+cos^2x+2sinxcosx)/(cos^2x-sin^2x).....toUsing (2) and (3)
=(cosx+sinx)^cancel(2)/(cancel((cosx+sinx))(cosx-sinx))
=(cosx+sinx)/(cosx-sinx)
=RHS