How do you prove 9sin(3x)cos(3x)9sin(3x)cos(3x)? Trigonometry Trigonometric Identities and Equations Double Angle Identities 1 Answer José F. Feb 5, 2016 (9/2)sin(6x)(92)sin(6x) Explanation: we know that 2sin(x)cos(x)=sin(2x)2sin(x)cos(x)=sin(2x) then: 9sin(3x)cos(3x)=(9/2)*2sin(3x)cos(3x)9sin(3x)cos(3x)=(92)⋅2sin(3x)cos(3x) (9/2)sin(6x)(92)sin(6x) Answer link Related questions What are Double Angle Identities? How do you use a double angle identity to find the exact value of each expression? How do you use a double-angle identity to find the exact value of sin 120°? How do you use double angle identities to solve equations? How do you find all solutions for sin 2x = cos xsin2x=cosx for the interval [0,2pi][0,2π]? How do you find all solutions for 4sinthetacostheta=sqrt(3)4sinθcosθ=√3 for the interval [0,2pi][0,2π]? How do you simplify cosx(2sinx + cosx)-sin^2xcosx(2sinx+cosx)−sin2x? If tan x = 0.3tanx=0.3, then how do you find tan 2x? If sin x= 5/3sinx=53, what is the sin 2x equal to? How do you prove cos2A = 2cos^2 A - 1cos2A=2cos2A−1? See all questions in Double Angle Identities Impact of this question 2473 views around the world You can reuse this answer Creative Commons License