Let #y=cosh^-1x# then by definition
#x=cosh y =(e^y+e^-y)/2#
#2x=e^y+e^-y#
#e^y-2x+e^-y=0#
#e^y-2x+1/e^y=0#
#e^(2y)-2xe^y+1=0#
Let #u=e^y# then we have
#u^2-2xu+1=0#--> Now use quadratic formula to solve
#u=(2x+-sqrt(4x^2-4))/2#
#e^y = (2x+-sqrt(4x^2-4))/2#
#e^y = (2x+-sqrt(4(x^2-1)))/2#
#2e^y = 2x+-2sqrt(x^2-1)#
#e^y=x+-sqrt(x^2-1)#
#ln e^y = ln (x+-sqrt(x^2-1))#
#y=ln (x+sqrt(x^2-1))#
#cosh ^-1 x = ln (x+sqrt(x^2-1))#