How do you prove #cos^-1(-sin((2/3) pi)#?

2 Answers
Jun 22, 2016

Note there is nothing here to prove.
If the intended question was to evaluate
#color(white)("XXX")cos^(-1)(-sin((2pi)/3))=color(green)(-pi/6#

Explanation:

#(2pi)/3# is equivalent to a reference angle of #pi/3# in Quadrant II.
In Quadrant II the #sin# of the reference angle is equal to the #sin# of the actual angle.

#pi/3# is a standard angle with #sin(pi/3)=sqrt(3)/2#

So
#color(white)("XXX")cos^(1)(-sin((2pi)/3))#

#color(white)("XXXXXX")=cos^(-1)(-sqrt(3)/2)#

#cos^(-1)# or (#arccos#) using the standard function definitions is restricted to the range #(-pi/2,+pi/2]#

Within this interval only
#color(white)("XXX")cos(-pi/6)=-sqrt(3)/2#
(again using standard trigonometric triangles)

So
#color(white)("XXX")cos^(-1)(-sqrt(3)/2)=-pi/6#

Jun 23, 2016

#(5pi)/6# in # [0. pi] #.

Explanation:

Let us use #cos^(-1)( cos x )= x#

Here, #-sin ((2pi)/3)=sin (-(2pi)/3)=cos ((pi/2)-(-(2pi)/3))=cos((5pi)/6)#.

Now, the given expression is #cos^(-1) (cos ((5pi)/6)) =(5pi)/6#.