How do you prove cos^-1(-sin((2/3) pi)?

2 Answers
Jun 22, 2016

Note there is nothing here to prove.
If the intended question was to evaluate
color(white)("XXX")cos^(-1)(-sin((2pi)/3))=color(green)(-pi/6

Explanation:

(2pi)/3 is equivalent to a reference angle of pi/3 in Quadrant II.
In Quadrant II the sin of the reference angle is equal to the sin of the actual angle.

pi/3 is a standard angle with sin(pi/3)=sqrt(3)/2

So
color(white)("XXX")cos^(1)(-sin((2pi)/3))

color(white)("XXXXXX")=cos^(-1)(-sqrt(3)/2)

cos^(-1) or (arccos) using the standard function definitions is restricted to the range (-pi/2,+pi/2]

Within this interval only
color(white)("XXX")cos(-pi/6)=-sqrt(3)/2
(again using standard trigonometric triangles)

So
color(white)("XXX")cos^(-1)(-sqrt(3)/2)=-pi/6

Jun 23, 2016

(5pi)/6 in [0. pi] .

Explanation:

Let us use cos^(-1)( cos x )= x

Here, -sin ((2pi)/3)=sin (-(2pi)/3)=cos ((pi/2)-(-(2pi)/3))=cos((5pi)/6).

Now, the given expression is cos^(-1) (cos ((5pi)/6)) =(5pi)/6.