How do you prove cos3θ=4cos3θ3cosθ?

1 Answer
Jun 6, 2016

Proof is given below.

Explanation:

cos3θ=cos(2θ+θ)

=cos2θcosθsin2θsinθ

=(cos2θsin2θ)cosθ2sinθcosθsinθ

=cos3θsin2cosθ2sin2θcosθ

=cosθ(cos2θsin2θ2sin2θ)

=cosθ(cos2θ3sin2θ)

=cos3θ3sin2θcosθ

=cos3θ3(1cos2θ)cosθ

=cos3θ3cosθ+3cos3θ

=4cos3θ3cosθ