How do you prove cos3θ=4cos3θ−3cosθ? Trigonometry Trigonometric Identities and Equations Double Angle Identities 1 Answer Trevor Ryan. Jun 6, 2016 Proof is given below. Explanation: cos3θ=cos(2θ+θ) =cos2θcosθ−sin2θsinθ =(cos2θ−sin2θ)cosθ−2sinθcosθsinθ =cos3θ−sin2cosθ−2sin2θcosθ =cosθ(cos2θ−sin2θ−2sin2θ) =cosθ(cos2θ−3sin2θ) =cos3θ−3sin2θcosθ =cos3θ−3(1−cos2θ)cosθ =cos3θ−3cosθ+3cos3θ =4cos3θ−3cosθ Answer link Related questions What are Double Angle Identities? How do you use a double angle identity to find the exact value of each expression? How do you use a double-angle identity to find the exact value of sin 120°? How do you use double angle identities to solve equations? How do you find all solutions for sin2x=cosx for the interval [0,2π]? How do you find all solutions for 4sinθcosθ=√3 for the interval [0,2π]? How do you simplify cosx(2sinx+cosx)−sin2x? If tanx=0.3, then how do you find tan 2x? If sinx=53, what is the sin 2x equal to? How do you prove cos2A=2cos2A−1? See all questions in Double Angle Identities Impact of this question 66597 views around the world You can reuse this answer Creative Commons License