How do you prove #cos(u-v)/(cosusinv)=tanu+cotv#?
1 Answer
see explanation
Explanation:
Attempt to convert the left side into the form of the right side.
Consider the numerator of the function on the left. Using the appropriate
#color(blue)"addition formula"#
#color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(cos(A-B)=cosAcosB+sinAsinB)color(white)(a/a)|)))#
#rArrcos(u-v)=cosucosv+sinusinv# We now have :
#(cosucosv+sinusinv)/(cosusinv)# now divide the terms on the numerator by the denominator.
#rArr(cancel(cosu)cosv)/(cancel(cosu)sinv)+(sinucancel(sinv))/(cosucancel(sinv))=(cosv)/(sinv)+(sinu)/(cosu)#
#color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(tantheta=(sintheta)/(costheta)" and " cottheta=(costheta)/(sintheta))color(white)(a/a)|)))#
#rArr(cosv)/(sinv)+(sinu)/(cosu)=cotv+tanu=tanu+cotv# Thus left side = right side
#rArr" proven"#