How do you prove #cos(u-v)/(cosusinv)=tanu+cotv#?

1 Answer
Sep 4, 2016

see explanation

Explanation:

Attempt to convert the left side into the form of the right side.

Consider the numerator of the function on the left. Using the appropriate #color(blue)"addition formula"#

#color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(cos(A-B)=cosAcosB+sinAsinB)color(white)(a/a)|)))#

#rArrcos(u-v)=cosucosv+sinusinv#

We now have : #(cosucosv+sinusinv)/(cosusinv)#

now divide the terms on the numerator by the denominator.

#rArr(cancel(cosu)cosv)/(cancel(cosu)sinv)+(sinucancel(sinv))/(cosucancel(sinv))=(cosv)/(sinv)+(sinu)/(cosu)#

#color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(tantheta=(sintheta)/(costheta)" and " cottheta=(costheta)/(sintheta))color(white)(a/a)|)))#

#rArr(cosv)/(sinv)+(sinu)/(cosu)=cotv+tanu=tanu+cotv#

Thus left side = right side #rArr" proven"#