How do you prove #cos(x-y)/cos(x+y)=(cot x +tan y)/( cot x- tan y)#?
2 Answers
See below...
Explanation:
#cos(x-y)/cos(x+y)#
#=(cosx cdot cosy + sinx cdot siny)/(cosx cdot cosy -sinx cdot siny)#
#=((cosx cdot cosy + sinx cdot siny)/(sinx cdot cosy))/((cosx cdot cosy - sinx cdot siny)/(sinx cdot cosy))#
#=((cosx cdot cosy)/(sinx cdot cosy) + (sinx cdot siny)/(sinx cdot cosy))/((cosx cdot cosy)/(sinx cdot cosy) - (sinx cdot siny)/(sinx cdot cosy))#
#=((cosx cdot cancel(cosy))/(sinx cdot cancel(cosy)) + (cancel(sinx) cdot siny)/(cancel(sinx) cdot cosy))/((cosx cdot cancel(cosy))/(sinx cdot cancel(cosy)) - (cancel(sinx) cdot siny)/(cancel(sinx) cdot cosy))#
#=(cot x +tan y)/( cot x- tan y)# FORMULA reference:- wiki
hope it helps...
Thank you...
We seek to prove that:
# cos(x-y)/cos(x+y) -= (cotx+tany)/(cotx-tany) #
We can the trigonometric identities:
# cos(A+B) -= cosAcosB - sinAsinB #
# cos(A-B) -= cosAcosB + sinAsinB #
Consider the LHS:
# LHS = cos(x-y)/cos(x+y) #
# \ \ \ \ \ \ \ \ = (cosxcosy + sinxsiny)/(cosxcosy - sinxsiny) #
Now if we multiply both numerator and denominator by
# LHS = (cosxcosy + sinxsiny)/(cosxcosy - sinxsiny) * (1/(sinxcosy)) / (1/(sinxcosy)) #
# \ \ \ \ \ \ \ \ = ( (cosxcosy)/(sinxcosy) + (sinxsiny)/(sinxcosy))/((cosxcosy)/(sinxcosy) - (sinxsiny)/(sinxcosy) ) #
# \ \ \ \ \ \ \ \ = ( (cosx)/(sinx) + (siny)/(cosy))/((cosx)/(sinx) - (siny)/(cosy) ) #
# \ \ \ \ \ \ \ \ = ( cotx + tany )/ ( cotx - tany ) \ \ \ # QED