How do you prove #(cos2A)/sinA + (sin2A)/cosA = csc A#?

2 Answers
Jul 12, 2018

Please refer to a Proof in the Explanation.

Explanation:

#(cos2A)/sinA+(sin2A)/cosA#,

#=(cos2AcosA+sin2AsinA)/(sinAcosA)#,

#=(cos(2A-A))/(sinAcosA)#,

#=cosA/(sinAcosA)#,

#=1/sinA#,

#=cscA#, as desired!

Jul 12, 2018

Please refer to a Second Proof in Explanation.

Explanation:

#"Using "cos2A=1-2sin^2A, and, sin2A=2sinAcosA#,

#"The L.H.S."=(1-2sin^2A)/sinA+(2sinAcosA)/cosA#,

#=1/sinA-(2sin^2A)/sinA+2sinA#,

#=cscA-2sinA+2sinA#,

#=cscA#,

#="The R.H.S."#