How do you prove #cot^2 A csc^2 A - cot^2 A = cot^4 A#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Nghi N. May 15, 2015 Replace cot by #cos/sin# in left side. #(cos^2 x/sin^2 x)(1/sin^2 x) - (cos^2 x/sin^2 x)# = #= ((cos^2 x)(1 - sin^2 x))/(sin^4 x)#= #cos^4 x/sin^4 x = cot^4 x# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 4987 views around the world You can reuse this answer Creative Commons License