How do you prove cot(theta)sec(theta)=csc(theta)cot(θ)sec(θ)=csc(θ)?

1 Answer
May 30, 2016

Applying the definition of cot, sec, csccot,sec,csc and tantan.

Explanation:

Recall the definition of these functions:

cot(theta)=1/tan(theta)cot(θ)=1tan(θ)
sec(theta)=1/cos(theta)sec(θ)=1cos(θ)
csc(theta)=1/sin(theta)csc(θ)=1sin(θ)

Then we want to prove

cot(theta)sec(theta)=csc(theta)cot(θ)sec(θ)=csc(θ)

that is equivalent to

1/tan(theta)1/cos(theta)=1/sin(theta)1tan(θ)1cos(θ)=1sin(θ)

We recall that tan(theta)=sin(theta)/cos(theta)tan(θ)=sin(θ)cos(θ), consequently
1/tan(theta)=cos(theta)/sin(theta)1tan(θ)=cos(θ)sin(θ).
I substitute in the previous equation

1/tan(theta)1/cos(theta)=1/sin(theta)1tan(θ)1cos(θ)=1sin(θ)

cos(theta)/sin(theta)1/cos(theta)=1/sin(theta)cos(θ)sin(θ)1cos(θ)=1sin(θ)

1/sin(theta)=1/sin(theta)1sin(θ)=1sin(θ).