How do you prove cot2x = (1+cos4x) / (sin4x)?

1 Answer
Jan 20, 2016

We will use the following identities:

  • sin(2theta) = 2sin(theta)cos(theta)

  • cos(2theta) = 2cos^2(theta) - 1

Now, starting from the right hand side:

(1+cos(4x))/sin(4x) = (1+(2cos^2(2x)-1))/(2sin(2x)cos(2x))

= (2cos^2(2x))/(2sin(2x)cos(2x))

= cos(2x)/sin(2x)

= cot(2x)