How do you prove # (csc+cot)(csc-cot)=1#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Rafael Oct 17, 2015 #csc^2theta=1+cot^2theta# is a trigonometric identity. Explanation: #[1]color(white)(XX)(csctheta+cottheta)(csctheta-cottheta)=1# Property: #(a+b)(a-b)=a^2-b^2# #[2]color(white)(XX)csc^2theta-cot^2theta=1# #[3]color(white)(XX)csc^2theta=1+cot^2theta# This is a trigonometric identity. Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 3896 views around the world You can reuse this answer Creative Commons License